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Abstract

Over the past several years there has been a noticeable rise in the number 

of reported targeted attacks, which are also commonly referred to as 

advanced persistent threats (APTs). This is seen by security experts as a 

landscape shift from a world dominated by widespread malware that infect 

indiscriminately, to a more selectively targeted approach with higher gain. 

One thing that is clear about targeted attacks is that they are difficult to 

detect, and not much research has been conducted so far in detecting 

these attacks. In this paper, we propose a novel system called SPuNge 

that processes threat information collected on the users’ side to detect 

potential targeted attacks for further investigation. We use a combination 

of clustering and correlation techniques to identify groups of machines 

that share a similar behavior with respect to the malicious resources they 

access and the industry in which they operate (e.g., oil & gas). We evaluated 

our system against real data collected by an antivirus vendor from over 

20 million customers installations worldwide. Our results show that our 

approach works well in practice and is helpful in assisting security analysts 

in cybercrime investigations.
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Introduction
Over the last several years there has been a noticeable rise in the number of reported targeted attacks, 

which are also commonly referred to as APTs or advanced persistent threats. These attacks are carried 

out by attackers with several different motivations – with financial gain and espionage being main driving 

factors. Financial gain is of course also a factor for widespread attacks, but espionage is more limited to 

attacks of a targeted nature. Overall this is seen by security experts worldwide as a landscape shift from 

a world dominated by widespread malware that infects indiscriminately, to a more selectively targeted 

approach with higher gain.

While it is unlikely that widespread malware will vanish completely (or even decrease noticeably), almost 

all industry commentators agree that targeted attacks will continue to rise. This view is also echoed by the 

media and AV company customers, who are very concerned about attacks aimed at their organizations. 

Notable examples of recent targeted attacks include Red October [1] and IXESHE [12].

One difficulty in talking about targeted attacks is that everyone has a different understanding of what it 

means to them. For the purposes of this paper we will use the following definition: 

“A targeted attack refers to an electronic attack carried out by 

a group of attackers against a specific organization, country 

or industry with the goal of theft of data or gaining control of 

company resources”.

In fact, what sets a targeted attack apart from a widespread attack is purely the motivation behind the 

attackers and their victims (targets), while the actual malware or technology adopted is largely irrelevant. 

For example a banker infection across 50 countries (e.g., Zeus) would be considered a widespread 

attack, while the same attack against two nuclear power plants – and nowhere else – is an example of 

a targeted attack. The tool is identical, but the motivations of the attackers, and the targeted victims set 

this apart.

One thing that is clear about targeted attacks is that they are difficult to detect, and not much research 

has been conducted so far in detecting these attacks automatically. In this paper, we propose a novel 

system that processes threat information collected on the users’ side to detect potential targeted attacks. 
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Often these attacks have generic detections which do not call them out as targeted in an obvious way, 

but using our approach we are able to reduce the millions of normal malicious events down to a more 

manageable amount for further in-deep analysis. Our contributions are:

• We propose a system to find potential targeted attacks (and victims). We use a combination of 

clustering techniques to identify groups of machines that share a similar behavior with respect to the 

malicious resources they request (e.g., exploit kits, drive-by downloads or C&C servers).

• We correlate the location and industry information in which these machines operate (e.g., oil & gas or 

government) to discover interesting attack operations.

• We implemented our system in a working prototype that we called SPuNge.

• We evaluated our system against one week of threat data collected by an antivirus vendor from over 

20 million users installations worldwide. Our empirical results show that our approach works well in 

practice and is helpful in assisting security analysts in cybercrime investigations.

The remainder of the paper is structured as follows: Section II presents our approach for the detection of 

potential targeted attacks and how our system is designed. Section II-B details how clustering is used in 

SPuNge. Later, in Section III we discuss the implementation details and the solutions we introduced to 

analyze the data in an efficient way. We address the ethical concerns in Section IV-C, while in IV and IV-B 

we describe how we conducted the experiments and our findings. We give the related work in Section V 

and conclude with Section VI.



6 | Targeted Attacks Detection With SPuNge

Target Attacks Detection with 
SPUNGE
We defined a targeted attack as an electronic attack carried out by a group of attackers against a specific 

organization, country or industry, with the goal of theft of data or gaining control of company resources – 

i.e., the victims are often located within one, or few, geographic locations, or they all operate in the same 

industry. Given this premise, hereby we introduce our approach for the detection of potential targeted 

attacks.

Events Pre-Processing

Distance
Matrices

Computation

Duplicate URLs
Clustering Clusters

Data
Reduction

Machine
Mapping

Grouping
Processed

Date

Analysis
Framework

Targeted
Attacks

Others
Results

Machines
Information

Figure 1. SPuNge Architecture

Our approach consists of two phases. In first stage, we analyze the malicious URLs that regular users 

machines access over HTTP(S) with an Internet browser, another HTTP client or because infected 

by a malware. We identify those machines that present a similar network behavior – e.g., accessing 

web pages used within the same phishing campaign or malware infection. We apply a combination of 

clustering techniques to group together similar malicious URLs, and we “organize” the machines based 

on the clusters of URLs that they requested. Our system, that we called SPuNge, is composed of six 

main components that do pre-processing, distance matrices computation, clustering, data reduction, 
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machine mapping and grouping. We introduce them in the rest of the Section and we present the general 

architecture in Figure 1.

In the second phase, we correlate the clusters of machines presenting a similar behavior, and we identify 

those machines, networks or organizations that are more likely to be involved in a targeted attack. For 

example, because operating in the same industry (e.g., oil & gas). We developed an analysis framework 

to analyze the results of the processing and to automatically generate a report for the security analyst. We 

discussed this more in detail in Section II-G.

Pre-Processing
We start our discussion by introducing the pre-processing component together with its tasks: (i) to load 

and parse the threat data to be analyzed, (ii) to get rid of irrelevant information to the detection of targeted 

attacks and (iii) to identify duplicates and redundancies in the URLs.

Within SPuNge we process collections of threat events, i.e. malicious URLs that regular users access 

over HTTP(S) with an Internet browser, another HTTP application or because infected by a malware with 

network capabilities (e.g., a bot that connects to the C&C server). These URLs are known to be malicious 

and are blocked at client side by a security program (e.g., an antivirus). Examples include: web pages that 

harvest malware, fake AVs, RATs, drive-by-download code, phishing campaigns, and finally C&C server 

hosting.

cr5aigslist.com craigsli8st.com crauglist.com craigslistnc.com

crageslist.com craigslisg.com craigslisrt.com craigslistny.com

craigaslist.org craigdlist.com craighlist.org craigilist.com

creagslist.com craiclist.com craigslit.ca craigllist.org

craigsliost.com cragslists.com

Table 1. Example of 16 craigslist’s typosquatting domains.

We process threat events “cleverly”, by trying to keep only those events that are more relevant for the 

detection of possible targeted attacks. Note that an event consists of the URL and of the information on 

the machine that requested it.

In particular, we apply the following set of filtering:

1. Classification: We ignore “parental controlled” URLs because they are not relevant for the detection 

of targeted attacks (e.g., sites related to pornography and violence).
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2. Network Sampling: We keep a single infected candidate per network and URL (i.e. one IP per Class 

B). We store information on which networks are infected and not for each machines.

3. Events Sampling: If a URL is requested by a single machine multiple times, we store this information 

once (i.e. the first request). A typical scenario is a botnet controlled machine that pulls commands out 

of the C&C server regularly.

4. Duplicates: If a single URL is widely requested by a large number of machines (N), we ignore the event 

if N is greater than a threshold, because it is not relevant for the detection of targeted attacks.

5. Whitelisting: We ignore clusters of popular URLs, for example URLs being massively requested. This 

is discussed later in Section IV-A.

Clustering in APT detection
Clustering is an operation that, given a set of arbitrary elements, identifies and assigns the elements, 

without prior information, to groups (called clusters), so that elements that are similar to one another 

according to a chosen criteria may fall in the same group. As such, clustering constitutes an important 

stage of our processing, as it permits to identify patterns in the collected data without prior knowledge, 

to reduce the number of elements to be examined. Therefore, it allows for the presentation of aggregate 

views of possible attacks. More specifically, clustering enables the identification of groups of malicious 

events sharing similarities in the URLs’ hostname or in the request path.

Attackers are known to register and exploit group of similar domains, for example using typosquatting 

techniques, to conduct attacks like drive-by-downloads, phishing, scamming and click fraud by leveraging 

the popularity of the benign domain that is “squatted”.

Recently, Avast! reported that craigslist advertisements website had been heavily typosquatted with 

hundreds of domains to lure the visitors into running a fake “quiz” where they receive an offer of a “free” 

prize such as an iPhone [1]. These sites typically make money through premium phone calls, selling 

advertisements, and reselling the emails collected from visitors. Some of these domains are shown in 

Table 1. Obviously this is a fraud.
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Exploit Kit URL’s Host URL’s Request

Blackhole hxxp : //77.79.13.88 /content/w.php?f=52&e=4

Blackhole hxxp : //188.127.249.241 /image/l.php?f=553&e=2

Blackhole hxxp : //brown.mydomxd.org /root/w.php?f=2293&e=6

Nuclear hxxp : //zeak.rghil.info /a456gh/9493af39692e[...].jar

Nuclear hxxp : //163.1.32.2 /1rg54e/55c2b44e0c8a[...].jar

Nuclear hxxp : //31.184.244.9 /6ju9a2/bb136b125774[...].jar

Table 2. Example of URLs used by BLACKHOLE and NUCLEAR exploit kits 

and detected with SPUNGE.

In another report, Hernandez [6] claimed that ten of the top 50 financial institutions, offering online banking 

services to their customers, had been “phished” with hundreds of fake domains that seemingly looked 

like the original websites. Attackers, for example, have registered more than 50 typosquatting domains of 

chase.com and deployed malicious variants of Chase Bank’s online portal for stealing the bank credentials 

of unaware victims.

While domain clustering is an effective approach to detect malicious URLs sharing the same domain 

characteristics, a complementary approach is to ignore the domain part of the URL and to cluster 

accordingly to the HTTP request string (path and query string). In fact, botnets and exploit kits authors 

normally don’t rely on a single domain to operate, which is generally seen as a single point of failure, but 

prefer to organize their infrastructure across multiple (often compromised) machines and locations, by 

switching from one to another regularly.

Two notable examples of exploits kits are Blackhole and Nuclear, which are currently among the most 

popular ways of delivering malicious payloads to a victim’s computer like fake AVs, bankers (e.g., Zeus) 

or ransomware. The attack consists of installing the exploit kit on a webpage that acts as landing server 

and attracting the most number of victims, via spamming for example. The landing page normally 

contains some obfuscated Javascript that detects the configuration of the victim’s machine and serves 

the appropriate exploit. By looking at Table 2, the reader can see that the URL’s request characterizes the 

threat as exploit kit and the family as Blackhost or Nuclear.

What we designed in SPuNge is a clustering algorithm that allows to identify groups of malicious URLs 

that share either similar hostnames (domains) or similar requests. As specified in RCF 39862, a URI 

schema is defined as a hostname (e.g., domain name or IP address) and a request path, as a sum of 

the path itself and the query string (a series of parameter-value pairs). Thus, clustering URL information 

involves computing two different sets of distances:
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1. Distances measuring the similarity of URLs’ hostname (host distances);

2. Distances measuring the similarity of URLs’ request, intended as path and query string (request 

distances).

Therefore, it becomes important to choose an appropriate distance, i.e. an appropriate similarity criteria. 

The similarity criteria has to be chosen depending on the type of data to cluster, and is usually in the form 

of a distance function that can estimate how “close” two elements of the dataset are to one another, or 

a metric, i.e. a function that calculates the unique coordinates of each element in a multidimensional 

algebraic space. The ability of either placing a dataset in a metric space or simply to compute distances 

between elements is also one of the factors that drive the choice of the clustering algorithm to use.

Clustering in SPuNge
Clustering has been widely used in literature, with the most renowned algorithms being adopted being 

k-means [7], used for example in [17], x-means [13], used in works such as [2] or [5], or hierarchical 

clustering [7], used in [14]. One of the requirements driving our work it is being able to process the data 

rapidly and efficiently. Because of that, and because of the prominently textual nature of our data, the 

clustering algorithm we introduced in SPuNge is a hierarchical single-linkage clustering, chosen for the 

following reasons:

• Algorithms like k-means usually require the number of clusters to be initially set, whereas in our 

scenario said number is not only unknown, but one of the variables to be computed. Even though 

variants, such as x-means, do not require an initial knowledge of the number of clusters, they involve 

several iterations over the same dataset and an additional cluster validation at the end of each 

iteration, thus adding computational cost to the processing.

•  Algorithms like k-means require an Euclidean distance to compute the cluster centroids, while 

hierarchical clustering can flawlessly cope with non metric distances like the ones used on our dataset.

•  Hierarchical clustering, in its single-linkage variant, does not require to recompute new distances 

when clusters are created, thus saving time and resources.

In the first phase, two distinct distance matrices are computed: One measuring the similarity of each 

URL pair according to its respective hostnames (host distance) and another measuring the similarity 

of their requests (request distance). The similarity is computed using the distance functions described 

later in the Section. The algorithm processes both distances matrices and groups similar URLs into two 

distinct cluster sets CHost and CReq: One with clusters of URLs sharing similar hostnames (host clusters) 

and another with clusters sharing similar requests (request clusters). To create each set, the clustering 

algorithm runs as follows:
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1. Each distance d is considered, in ascending order;

2. The list of all URL pairs (e1, e2) that measured d is parsed;

3. Each pair is assigned to a new cluster Cnew;

4. If e1 or e2 were already assigned to a previous cluster Cold, Cnew assimilates all the elements in Cold, 

and then Cold is discarded;

5. The operation repeats until a given threshold T is reached, i.e. until there are no more pairs at a 

distance lower than T.

cr5aigslist.
com

craigsli8st.
com

crauglist.com craeglist.com google.com

cr5aigslist.com 0 0.0666 0.1428 0.1428 0.520

craigsli8st.com 0.0666 0 0.1428 0.1428 0.520

crauglist.com 0.1428 0.1428 0 0.0769 0.478

craeglist.com 0.1428 0.1428 0.0769 0 0.478

google.com 0.520 0.520 0 .478 0.478 0

Table 3. Example of distance matrix for hostnames (normalized Levenshtein).

As such, T is the maximum allowed distance to cluster URLs together. The threshold serves a double 

purpose of (i) acting as a termination condition for the clustering, by defining size and quality of each 

cluster, and (ii) limiting the amount of processing resources (i.e. every pair having a distance higher than 

the threshold can be memory freed).

1. Host Distance: In this section we explain the distance function that we used to measure the similarity 

between hostnames.

As hostnames are strings, similarity between hostnames can be computed with one of the several well-

known functions that are capable of quantifying how two strings of text are similar to one another: The 

Hamming distance, for example, counts the number of bits having same position and different value; the 

Jaccard distance treats text as a set of characters and counts how many characters two sets do not have 

in common; the Levenshtein distance is probably the most common.

The Levenshtein distance measures the similarity of two strings as minimum number of edit operations 

needed to change one string into the other, with an edit operation being insertion, deletion or modification 

of a character in a string. As an example, two edit operations are needed to change the word “Robert” to 

“Roger”: “Robert” ¬ “Rogert” and “Rogert” ¬ “Roger”. Levenshtein also allows a comparison of strings 

of different length (unlike the Hamming distance) and keeps the information on duplicate characters and 

their position (that Jaccard does not).
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In SPuNge, we use the Levenshtein function, normalized in the interval [0; 1] to compute the distance dhost 

between two hostnames. The example in Table 3 shows the distances computed over the typosquatting 

domains of Table I plus an additional domain (google.com), which is very different from the others. As we 

can see, there are several desirable properties that made it a suitable candidate:

A. The distance is 0 for the same domain;

B. The distance is symmetric;

C. There is a clearly quantifiable difference between similar and non-similar domains: Different 

domains show a distance much higher than similar one, making it relatively simple to differentiate 

the two (gray color).

2. Request Distance: As we have already said before, a URI schema is defined as consisting of a 

hostname and a request path, as a sum of the path itself dpath and the query string dqsl (a sequence 

of parameters and values).

As a consequence, the request distance dreq between two URL requests is more complex than dhost, 

because composed of two distinct metrics. That is, we use the normalized Levenshtein function to 

compute the similarity between paths and the Jaccard function to measure the similarity of the query 

strings. Note that we apply the Jaccard only to the query string’s parameters (and not their values), by 

counting how many parameters the two requests have in common. We ignore the values because they 

often change and poorly characterize a request.

Figure 2. The request distance dreq as contribution of dpath and dqsl similarities. 
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Cluster Cluster Label Event Hostname

C1
H zfmudav4aaq33r5.com

e1

e2

e3

e4

zfmudav4aaq33r5.com

zfmudav4aaq35r5.com

zfmudav3aap36r5.com

zfmudav2acq35r4.com

C2
H facebookc.com

e5

e6

e7

e8

facebookc.com

facaebook.com

faceboook.com

facebopok.com

C3
H h-aelameftzgj4vxient.com

e9

e10

e11

e12

h-aelameftzgj4vxient.com

h-aelameftxcd5vxient.com

h-aelameftssd6vxient.com

h-aelanfftzgj1vxient.com

Table 4. Example of host clusters.

The request distance, as shown in Figure 2, is the contribution of two sub-distances and obtained by the 

following formula:

WeightFactor is a numerical factor that rescales dqsl so that dqsl and dpath bear an equal contribution to 

dreq. The rule of thumb to calculate the WeightF actor is that the threshold Tpath and Tsql for both components 

should be the same. Dpath uses the same Levenshtein distance as dhost, and the two thresholds Tpath 

and Thost have the same value (0.15); two paths with a distance lower than 0.15 are considered similar. 

However, we consider two query strings similar if they have at least half of their parameters in common, 

hence the threshold of Tsql is 0.5. In order to normalize Tsql to 0.15, we set WeightFactor to 0.333; applying 

the Equation 1 to Tpath and Tsql gives a compound threshold Treq of 0:15√2 = 0:212.

Labeling and Data Reduction
When the clustering is over, the processed events are “organized” in two orthogonal cluster sets that 

contain URLs grouped according to our two criteria of similarity (hostname and request). Examples of the 

two cluster sets are shown in Tables 4 and 5.
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In this section, we describe the operation of cluster labeling, which consists of assigning to a cluster a 

“human-friendly” label (i), and of data reduction, which consists of reducing the number of clusters by the 

identification of redundancies and merging (ii).

Cluster Label Event Request

C4: R /get2.php?c=BLMEUGUBd=266
e1

e2

/get2.php?c=BLMEUGUBd=266

/get.php?c=ZLXULJNRd=266

C5: R /9MzImdHA9MCZmbD0w0
e3

e4

/9MzImdHA9MCZmbD0w0

/9MzImdHB9MCZmbD0w1

C6: R /qKA0rO4d8I7qBhS7Y2xrPTQu

e9

e10

e11

e12

/qKA0rO4d8I7qBhS7Y2xrPTQu

/IkG1yP3L8q5YPtU7Y2xrPTQu

/BAq3T78d8l5Q7bs0Y2xrPTQu

/pA71gKND6P5MTls9Y2xrPTQu

Table 5. Example of request clusters

We introduced labels to rapidly visualize the content of a cluster (i.e. without the need of inspecting the 

URLs contained within). We label each cluster with the following convention:

• Host clusters’ label have prefix H followed by the hostname of a cluster’s event;

• Request clusters’ label have prefix R followed by the query string of a cluster’s event.

The data reduction operation consists of going through both clusters sets, henceforth referred to as 

CHost and CReq, and performing a clusters merge when certain conditions are met. Merging two clusters 

of different type involves discarding one of the two and updating the label of the “survivor” to reflect the 

merge operation. In detail, we have the following possibilities:

1. If CHost and CReq contain the same information, CReq is discarded [3] and CHost’s label is updated 

as CHOST-LABEL =: CREQ-LABEL

2. If CHost is a subset of CReq, CHost is discarded and CReq’s label is updated as CREQ-LABEL >: 

CHOST-LABEL

3. If CReq is a subset of CHost, CReq is discarded and CHost’s label is updated as CHOST-LABEL >: 

CREQ-LABEL

Table 6 shows the results of the merging stage on 4 and 5. The labeling convention we adopted 

provides a quick understanding of the clusters content and the relationships between the merged 

clusters. For example, the C1’s label tells us that C1 is a cluster of URLs having hostnames similar to 
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zfmudav4aaq33r5.com and requests in two groups: The first similar to /get2.php?c=BLMEUGUBd=266 

and the second to /9MzImdHA9MCZmbD0w0. A second cluster C3 contains URLs having both similar 

hostname h-aelameftzgj4vxient.com and request /qKA0rO4d8I7qBhS7Y2xrPTQu.

Clusters Cluster Label Event URL

C1

H zfmudav4aaq33r5.com >:

R /get2.php?c=BLMEUGUBd=266 >:

R /9MzImdHA9MCZmbD0w0

e1

e2

e3

e4

zfmudav4aaq33r5.com/get2.php?c=BLMEUGUBd=266

zfmudav4aaq35r5.com/get.php?c=ZLXULJNRd=266

zfmudav3aap36r5.com/9MzImdHA9MCZmbD0w0

zfmudav2acq35r4.com/9MzImdHB9MCZmbD0w1

C2
H facebookc.com

e5

e6

e7

e8

facebookc.com

facaebook.com

faceboook.com

facebopok.com

C3

H h-aelameftzgj4vxient.com =:

R /qKA0rO4d8I7qBhS7Y2xrPTQu

e9

e10

e11

e12

h-aelameftzgj4vxient.com/qKA0rO4d8I7qBhS7Y2xrPTQu

h-aelameftxcd5vxient.com/IkG1yP3L8q5YPtU7Y2xrPTQu

h-aelameftssd6vxient.com/BAq3T78d8l5Q7bs0Y2xrPTQu

h-aelanfftzgj1vxient.com/pA71gKND6P5MTls9Y2xrPTQu

Table 6. Example of merged clusters

Machine Mapping
Up to this point the processed results contain information about similar malicious URLs, which we 

clustered together. The machine mapping component aims at identifying and correlating the source of 

the malicious requests, i.e. by finding out which group of machines have performed requests to the same 

cluster, or vice versa to which resources (clusters) have a machine connected to. In fact, we are interested 

in knowing which users machines behave similarly with respect to their malicious network behavior, for 

example because targeted by the same phishing campaign or botnet.

To achieve this result, the following transformations are performed on the merged clusters set:

1. For each cluster: We extract from all cluster’s events an identifier of the user machine, i.e. its IP 

address in an anonymized form (we take into consideration possible privacy issues, as we describe 

in Section IV-C.

2.  We produce an association table in the form cluster → machine, as shown in Table 7.



16 | Targeted Attacks Detection With SPuNge

3. We build a second table in the form machine → cluster, as shown in Table 8. – Note that the two tables 

are one the reverse format of the other.

Cluster Cluster Label Event Source Machine

C1

H zfmudav4aaq33r5.com >:

R /get2.php?c=BLMEUGUBd=266 >:

R /9MzImdHA9MCZmbD0w0

e1

e2

e3

e4

M1

M2

M3

M4

C2
H facebookc.com

e5

e6

e7

e8

M1

M2

M5

M6

C3

H h-aelameftzgj4vxient.com =:

R /qKA0rO4d8I7qBhS7Y2xrPTQu

e9

e10

e11

e12

M3

M4

M5

M7

Table 7. Example of cluster → machine associations.

Source Machine Clusters

M1 C1, C2

M2 C1, C2

M3 C1, C3

M4 C1, C3

M5 C2, C3

M6 C2

M7 C3

Table 8. Example of machine → cluster associations.
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Grouping
With this last processing stage, called grouping, we want to identify groups of machines that request the 

same set of clusters (more than one). Attacks often involve a multi-step process, i.e. the attack is carried 

out in different phases. A well-known example is a drive-by-download infection in which the victim is first 

redirected to the malicious page and then served with the right exploit.

While so far the information we collected in form of machine → cluster association tells us which individual 

machine has connected to which destination(s), individually, we perform one last operation to group 

clusters and machines together. With grouping, we are able to identify:

• If there are groups of uncorrelated resources (e.g., websites) that are used within the same attack or 

campaign (e.g., malware or phishing campaign);

• If there are groups of machines requesting the same malicious resources, for example because being 

infected by the same variant of malware;

• If there are machines connecting to a significantly high number of malicious resources, for example 

because being heavily infected.

Groups Machine Set Clusters Set

G1 M1, M2 C1, C2

G2 M3, M4 C1, C3

G3 M5 C2, C3

G4 M6 C2

G5 M7 C3

Table 9. Example of groups (machine and clusters)

The result is shown in Table IX: In here we see, for example, two machines {M1, M2) belonging to the same 

group of clusters {C1, C2), and a second group of machines {M3, M4) sharing the group G2.

Analysis Framework
Until now, we discovered which group of machines presents a similar malicious network behavior. For 

example, because accessing web sites used within the same phishing or malware campaign. We used 

a combination of clustering techniques to cluster malicious URLs that are similar to each other and 

“organize” the machines based on the clusters of URLs that they accessed.
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Next, we developed an automated analysis framework to analyze each group of machines and identify 

potential candidates of targeted attacks. We correlate the information of these candidates, i.e. the industry 

in which they operate (oil and gas or government, for example) and the location (country).

We run two types of analysis: A first on the clusters set, and a second on the groups of clusters (more 

than one). In the cluster analysis, we look for N+ machines operating in the same industry or country (or 

a combination of both), and generating requests to URLs being clustered together because similar. We 

make N varying between 2 and 5. In the group analysis, we search for groups of N+ machines that share 

C or more clusters. We use the results of the grouping step previously described and we make both N and 

C varying, between 2 and 5 for example. We verify that the identified machines do not share their behavior 

with other groups – i.e. a sign of widespread attack.

For those machines that match our criteria, we automatically generate a report for the security analyst. An 

example of the results that our system is able to provide is given later in Section IV.
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Implementation
We implemented SPuNge as a Python 2.7 application, a prototype that analyzes threat information with 

clustering and correlation techniques to discover potential targeted attacks (and victims).

Our implementation faced several challenges, i.e.:

1. the amount of threat data to process was in the order of millions of requests (as shown in Table 10),

2. some processing stages have high complexity (e.g., given N requests, we compute (N2) ≈ N2/2 

distances),

3. to allow for continuous run on a single machine, the analysis over H hours of threat data must last 

less than H hours and

4. the processing has to be recoverable in the eventuality of crash (i.e., as modern filesystems guarantee).

In this section, we detail the design choices we put in place to cope with these constraints.

Duplicates identification and optimization
On top of the pre-processing’s filtering operations, which we introduced previously in Section II-A, we 

perform some additional data optimization at the initial stage. In fact, threat data can be redundant, for 

example because the same URL address is requested several time and by multiple infected machines. 

The strategy we adopted to handle this “special case” is to organize the data in two groups of duplicate 

and unique URLs during the pre-processing stage. We then restrict the computation of the distance 

matrices to a sample per duplicate group.

In particular, we rely on a hash-based algorithm to identify duplicate elements. Upon parsing each 

URL, we compute two MD5 hashes (i.e. one per hostname and one per request) and we group together 

URLs having the same hostname or requests. Then, during the clustering stage, we randomly pick one 

“candidate” URL for each duplicate group to include in the computation of the distance matrices.

Our empirical experiments over millions of requests showed that our approach reduced the clustering 

overhead time of 19% – about 10% less URLs to “distance-compute”.
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Distributed distance computation
Distance computation is demanding on computing resources. Fortunately, it is also an operation over 

uncorrelated data that can run in a distributed form. We designed SPuNge with an algorithm that supports 

multi-processing, which is nowadays commonly found in modern multi-core CPUs. It is relatively 

straightforward, with almost no code change, to extend the system to distributed computing (over multiple

machines) with one of the many frameworks available for Python [4].

We use this algorithm to compute the two distance matrices (host and request) and the grouping table 

described in II-F. Our algorithm works as following:

• We build a linearized events matrix as list of events pairs (also known as the distances list). 

• To restrict the memory consumption, we split the distances list into N iteration segments to process 

sequentially. In this way, we can run the processing on memory-bound systems by configuring the 

number of iteration segments N accordingly.

• At each iteration, we split the iteration segment into worker segments (a sub-list of request pairs) 

and a pool of worker processes is instantiated to process each segment (one process per segment). 

Workers have exclusive read-access to the memory area containing the segments by avoiding 

computational overhead due to message passing, mutex locking or possible race conditions. The 

results are returned in a shared queue.

• A collector waits for the results, receives the computed distances and organizes them as list of pairs 

that measured that much; this makes easier to fetch the distances during the clustering operation. 

To optimize the processing, the garbage collector is controlled manually: We suspend it during the 

intense distance computation stage and re-enable it once each iteration has ended.

• At the end of each iteration, each partial result is stored on disk to make the whole process faulttolerant. 

Note that we perform this operation after every processing stage. We use an efficient C-based Python 

serialization library called cPickle [5] that we found to be very fast.
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Experiments
We ran SPuNge against real data collected on the users’ side from an antivirus vendor [6], with the goal of 

evaluating the detection of potential targeted attack campaigns. Trend Micro’s smart protection network 

(hereby called SPN [7]) is a cloud-based infrastructure that collects about 6 terabytes of threat data per 

day from over 20 million customers installations worldwide. The threat data is collected by the SPN 

network on an hourly basis, and made available to the analyst in the form of data feeds with an API and 

a web application.

We based our analysis on a data feed that collects information on the malicious URLs that are accessed 

by users over HTTP(S). When a user requests a URL that is known to be malicious, for example because 

hosting a RAT, a malware, or a C&C channel, the network security component of the antivirus generates 

an event for the smart protection network. This event contains information on the requested URL and the 

user’s application that requested it, together with the configuration of the machine. The event consists of 

the following aggregate fields (summarized):

• The time when the event occurred (GMT converted);

• The URL being requested and the IP address of the web server (at the time of the request);

• The process that generated the HTTP(S) request (name, size and hash);

• The IP address, location (country) and OS version of the machine that generated the event;

• The industry in which the attacked entity operates. A comprehensive list is given in [8].

We ran our experiments over one week of threat data – from Sunday 11th to Saturday 17th of November – 

by deploying two physical machines (A and B) in our testing infrastructure. We used machine A to process 

the data with SPuNge and machine B to analyze the results, that we transferred from A to B over network. 

B runs a PostgreSQL database. Their configuration is as following:

• Machine A: Intel Xeon 2.40GHz, 16 Cores, 72GB RAM, 3.5TB Hard Disk

• Machine B: Intel Xeon 2.83GHz, 8 Cores, 16GB RAM, 4.0TB Hard Disk
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Figure 3. Machines distribution across the different clusters.

Dataset Optimization
When we ran the experiments, we decided to analyze each day individually, i.e. to make use of the results 

of day N as input for the following processing N + 1. In fact, the dataset that we used to evaluated SPuNge 

revealed to contain “polluted” information, for example webpages that did not appear to be malicious any 

longer or that have been taken down. In addition, as a consequence of the use of inaccurate signatures 

in URLs-pattern-matching, URLs having, for example, /icon.ico or /favicon.ico as path are considered 

malicious regardless if the file exists and is indeed malicious. Finally, when the reputation is computed at 

hostname level, we noticed some webpages being filtered because hosted on a malicious IP or domain, 

regardless of the nature of the page. As a consequence, we observed several machines requesting the 

same group of URLs, i.e. generating events that are not necessarily associated with potential targeted 

attacks.

In order to cope with this limitation, after each day of analysis we automatically extracted the clusters of 

URLs being requested by more than N machines – because these are more likely to be used in widespread, 

rather then targeted operations – and we excluded them from the following processing. In this way, we 

first avoided to re-process the same URLs and we focused on analyzing fresh data; second we followed 

up in keeping more interesting information. From an implementation point of view, we empirically choose 

N = 25 as threshold – i.e. the same value we used in the elimination of the duplicated URLs during the 

pre-processing stage (ref. Section II-A).
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Number of:
Sun. 
11

Mon. 
12

Tue. 
13

Wed. 
14

Thu. 
15

Fri. 
16

Sat. 
17

Raw events (million) 2.79 5.17 5.58 5.68 5.22 4.91 2.62

Processed events 387,339 536,524 256,270 221,954 230,758 269,103 329,458

Processed machines 10,866 15,581 15,413 15,391 14,165 14,364 8,406

Detected clusters 4,106 8,825 8,195 7,825 7,196 7,281 3,869

Detected groups 2,144 3,941 3,579 3,528 2,679 2,896 1,069

Hostnames clustering

Clustered events 20,433 46,361 44,362 38,663 37,232 41,349 24,596

Computed pairs (mil.) 208 1,074 983 747 693 854 302

Iterations 1 5 4 3 3 4 2

Requests clustering

Clustered events 111,073 192,075 159,294 117,271 146,279 136,137 138,335

Computed pairs (mil.) 6,168 18,446 12,687 6,876 10,698 9,266 9,568

Iterations 25 74 51 28 42 38 39

Processing time (sec)

Pre-processing 268 769 665 667 604 527 302

Matrices computation 8,708 21,273 15,307 9,988 13,395 11,675 9,683

Clustering 3,198 10,665 4,906 2,500 4,983 4,739 12,987

Merging 2,089 31,370 23,040 9,632 18,614 13,581 5,082

Machine mapping 274 1,214 488 187 441 414 1,187

Grouping 51 93 74 62 67 61 48

Total (hrs:min) 04:15 18:09 12:32 06:31 10:44 08:47 08:28

URL’s Host URL’s Request Machine Country
Process 
Name

hxxp : //83.133.124.191 HVM2wppE5M7mnPC7Y2xrPTQuOCZ M1 US ping.exe

hxxp : //83.133.124.191 vA21k6yD7N5XAKC8Y2xrPTQuOCZ M2 US ping.exe

hxxp : //46.249.59.47 4zk3oUup7K7xjOS0Y2xrPTQuNyZ M3 US ping.exe

hxxp : //63.223.106.17 rK61TBkp5a3mCgS4Y2xrPTQuNyZ M4 AU ping.exe

 Table 10. Processing results.

Table 11. Ping.exe Malware. Cluster's label is R /sVv4VmLE8Z5Mdzc9Y2xrPTQuNyZia.
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Our findings showed that our approach works. In fact, after the first two days, where we massively learned 

on the poor quality URLs, we reduced the number of events to process from 300-500,000 to roughly 

200,000 events, by halving the processing time and incrementing the quality of results – i.e., less number 

of clusters with a big number of machines (ref. Table 10). The URLs that we daily identified as “polluted” 

and added to the exclusion list are respectively 252,998, 191,891, 112,627, 3,459, 2,255 and 2,413.

This is confirmed from Figure 3, which shows the machines allocation in the different clusters, i.e. how 

many machines are clustered into clusters of increasing size. The black bars show the allocation of the first 

run performed, the 11th of November, where no exclusion was made due to lack of previous information,

while the white bars represent the machine allocation on the 17th of November, when a whole week of 

information coming from previous clusters has been used to skim the raw data. The peak on the left is 

made of a large number of small clusters (2-3 machines), while the tail on the right is made of few clusters 

resulting by the merge of numerous events. The interesting result comes from the elimination of a big 

chunk of clusters having more than N = 25 machines as discussed previously.

To summarize, we configured SPuNge with the following parameters and we ran our automated 

processing over a whole week of threat data: clustering iteration size: 250 million, grouping iteration size: 

20 million, duplicate and pollution thresholds (N): 25 events, clustering thresholds (T): 0.15 (host) and 0.15 

√2 (request).

Findings
We start describing our findings with Table 10. Our datasetconsists of about 5 million events on weekly 

days (from Monday to Friday) and 2.5 million on Sunday and Saturday – non-working days in most of the 

users’ countries. After having applied the pre-processing filters described in Sections II-A and IV-A, out of 

the total number, we analyzed an average of 200-300,000 events.

We then further reduced this number down to those events that are unique with respect to URL’s hostname 

or requested path, and we ran the distance matrices computation only for these URLs, as previously 

discussed in III-A. We ended up in creating two groups of data: A first of about 20-40,000 unique URLs 

– with respect to the hostname – that we “host clustered”, and a second of 100-200,000 unique URLs 

– with respect to the request – that we “request clustered”. This second group is much larger because 

malware authors often use variation patterns of the path or the query string parts of the request. A typical 

example are exploit kits, such as Blackhole and Nuclear, that use a variation of different path’s parameters 

to identify the right exploit to serve to the victim based on its configuration.

We used clustering to achieve this result. Nevertheless, clustering is, by definition, a slow approach. As 

we previously described in Section III-B, we carefully took into account this challenge, and we designed 

and implemented appropriate solutions. Our empirical results on a real dataset proved that our system is 
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able to process data in an online fashion (i.e. the processing time is smaller than the dataset interval). In 

fact, our timing measurements showed that SPuNge can handle millions of raw threat events collected 

each day from over 20 million users installations in less then half-day and with a single 16 cores machine. 

Note that it is relatively straightforward, with almost no code change, to extend the system to distributed 

computing (over multiple machines)

The results of this processing are presented in Table 10. Each day our system builds aggregate clustering 

information out of millions of raw events collected at machine level. In particular, we detected an average 

of 7,882 clusters and 3,306 groups per day – Table 11 gives an example. This is a group of machines 

infected by a newly discovered bot that disguises itself by injecting in the standard Windows’s application 

ping.exe. This cluster, labeled as R /sVv4VmLE8Z5Mdzc9Y2xrPTQuNyZia (request base cluster), has 

been identified as consequence of infected machines that communicate with the C&C server by using 

similar URLs request.

In the following, we give two examples of detection with SPuNge and the correlation framework introduced 

in Section II-G. By looking for machines presenting a similar behavior and correlating their information, i.e. 

the industries and countries in which they operate, we reveal victims of  potential targeted attacks.

Cluster 7543 - H146.185.246.116 >:R /p98a.exe >:R /dd.exe

http : //146.185.246.111/p98a.exe NETWORK 1

notepad.exe 2012-11-13 09:50:35

http : //146.185.246.116/p18a.exe NETWORK 1

notepad.exe 2012-11-13 09:50:37

[...]

http : //146.185.246.121/mailsa.exe NETWORK 1

notepad.exe 2012-11-13 09:50:24

http : //146.185.246.101/lmqa.exe NETWORK 1

notepad.exe 2012-11-13 09:50:26

http : //146.185.246.63/dd.exe NETWORK 2

svchost.exe 2012-11-13 11:45:27

http : //146.185.246.63/dd.exe NETWORK 3

svchost.exe 2012-11-13 20:58:55

http : //146.185.246.104/dqs.exe NETWORK 1

notepad.exe 2012-11-13 09:47:36

NETWORK 1  Technology  Mexico   Windows 5 . 1

NETWORK 2  Technology  Turkey   Windows 5 . 1

NETWORK 3  Technology  Morocco  Windows 5 . 1

Listing 1. RBN Example - Technology Industry

In Listing 1, we have 3 distinct class B networks, all belonging to companies operating in the technology 

industry, and located in three separate and remote locations: Mexico, Turkey and Morocco. These events 

have been clustered together because sharing similar hostnames, e.g. IP addresses of contiguous space, 

and paths that consist of binary files with short name. This piece of malware is used to keep control of 
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the infected machines via a backdoor. The malware injects into the memory space of legitimate Windows 

programs (i.e. notepad.exe and svchost.exe) to avoid easy detections. When looking at the IP 

addresses that have been connected, they all belong to the same netblock, from Russia, registered with 

information belonging to actors operating malicious activities. This netblock has a history of badness and 

is associated with the infamous Russian Business Network (RBN), which is known to provide support, 

custom services and malware for targeted attacks operations [4], [15].

The next example of Listing 2 shows two networks, which are both identified as Malaysian companies in 

the oil and gas industry. The machines seated in these two networks reached out on November 14th two 

clusters of C&C servers, with a process called r18nwn.exe. Our system grouped these clusters together 

because exclusively accessed by the same victims and part of the same attack.

Group 1245,2 Clusters , 2 Networks

Cluster 1725,

Label: R/list.php?c=140C3 [...] =:Hw.nucleardiscover.com:888

E1: http://w.nucleardiscover.com:888/list.php?c=140C34E31DAB3B9746[...]&t=0.689831&v=2

E2: http//w.nucleardiscover.com:888/list.php?c=D8C08B5CD1670FA396[...]&v=1&t=0.9288141

Cluster1932, Label: R/gggg_r.jpg?t=0.1424164

E1: http://61.147.99.179:81/gggg_r.jpg?t=0.1424164

E2: http://ru.letmedo.net:2011/myck.jpg?t=0.3245672

NETWORK1: Oil and Gas Malaysia Windows 5.1

r18nwn.exe (HASH HERE) 2012-11-14

NETWORK2: Oil and Gas Malaysia Windows 5.1

r18nwn.exe (HASH HERE) 2012-11-14

Listing 2. Example of Cluster Group - Oil&Gas Industry.

McAfee [9] also sees this attack localized to the south Asia region and refers to it as a malware that 

“spreads by transmission to a removable medium such as a removable disk, writable CD, or USB drive”. 

This is a common methodology followed by malware authors targeting networks that might not have an 

easy access to the Internet, for example companies operating in industrial environments. The malware 

waits for commands from an attacker (as opposed to carrying out automated activity). This is very 

uncommon in widespread attacks, but part of the standard modus operandi of targeted attack groups, 

especially those based in China. We used the historical data provided by the DomainTools service [10] to 

verify that the domain was originally registered to a person located in China. His name is also linked to 

multiple other malicious domains employed in targeted attack operations.
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Ethical Considerations
Real-world experiments involving data collected at customer side may be considered an ethically sensitive 

issue. Clearly, one question that arises is if it is ethically acceptable and justifiable to conduct experiments 

that involve real users. Similar to the experiments conducted by Jakobsson et al. [8], [9] and previous work 

in the field [17], we believe that realistic experiments are the only way to reliably estimate success rates

of detection systems in the real-world. During the experiments we described in the paper, we took into 

account the privacy of the users, and the sensitivity of the data that was collected. In particular, identifiers 

(e.g., IP addresses of the machines) were anonymized, and any information that could reveal the user 

identity previously removed. Finally, all experiments were performed in Europe. Hence, we consulted with 

the legal department of our institution and our handling and privacy precautions were deemed appropriate 

and consistent with the European legal position.
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Related Work
Thonnard et al. [16] provide an analysis of APT campaigns, focusing on studying the characteristic of 

a known set of targeted attacks delivered with email attachments, and evaluate the prevalence and 

sophistication level of said attacks by analyzing the malicious attachments used. Another paper focusing 

on the analysis of APTs campaign is [10]: The authors use graphs to give a broad view of APT campaigns, 

rather than analyzing them individually. By associating attacks with shared targets, it is possible to build 

a map of the APTs activities and identify clusters that could represent common activities from a single 

team. In [11], authors show how to determine, from a known targeted attack, the N most likely victims of 

the attack, by improving the performance in terms of detection rate and false positives with regards to 

N-gram based approaches. Despite providing the reader with insights of APTs, the above works focus on 

analyzing already identified campaigns, while the scope of our work is to present a new methodology that 

leverages clustering techniques to identify and single out possible attacks yet to be discovered.

Clustering has been widely used in data mining as a technique to find common patterns and similarities 

in huge sets of data; recently security researchers have applied it as a way to perform traffic aggregation 

and classification to identify botnets and other threats. Perdisci et al. in [14] propose a clustering-based 

approach to the analysis of HTTP-based malware traffic, in order to improve the generation of signatures, 

while in [5] they introduce a solution to identify botnets via the analysis of network traffic that require no 

prior knowledge, i.e. it does not require previous assumptions on the botnets’ network behavior. The 

authors are able to identify IRC-, HTTP- and P2P-based botnets with success. In [2], a novel approach to 

identify DGA-based malware domains is proposed by the same authors. In lieu of reverse engineering DGA 

algorithms to identify domains used by botnets, the authors propose the use of clustering for the analysis 

of NXDomain traffic, under the assumption that most of DGA-generated DNS queries would result in 

NXDomain responses. Finally, [17] offers a solution to identify candidates of botnet-infected machines by 

analyzing the aggregation patterns of network traffic, while in our case we rely on a network traffic who has 

already been classified as malicious. On a different note, in [3], Ulrich et al. exploit clustering techniques 

to perform behavior-based malware classification. Unlike network clustering, this work clusters malware 

samples based on host-based features like system calls and memory objects.
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Given the related works presented above, none of them address explicitly the problem of identifying 

potential targeted attacks, by means of malicious traffic aggregation and correlation of machines 

information. We believe that the opportunity for using this methodology in APTs detection is big and, to 

the best of our knowledge, still unexplored.
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Conclusion
We introduced a novel system, that we called SPuNge, to process threat information collected on the 

users’ side to detect potential targeted attacks for further investigation. We used a combination of 

clustering techniques to identify groups of machines, and networks, that are possibly involved in the same

attack. In addition, we showed how we correlate industry and country information of the victims to reduce 

the millions of normal malicious events down to a more manageable amount for further in-deep analysis. 

We evaluated our system against one week of data collected by an antivirus vendor from over 20 million 

users installations worldwide. Our results show that our approach works well in practice and is helpful in 

assisting security analysts in cybercrime investigations.
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